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G-1 Kurzfassung 

Feuchtgebiete sind von großer Relevanz für die Aufrechterhaltung der Biodiversität und erfüllen wichtige 
Funktionen in Bezug auf den Wasserhaushalt eines Gebietes. Die Salzlacken im Nationalpark 
Neusiedler See – Seewinkel stellen einzigartige Lebensräume für angepasste Tier- und Pflanzenarten 
dar. Ihr Erhalt beruht in großem Maße auf dem Wasserhaushalt des Gebiets. Die große Zahl von 
Lacken, die aufgrund ihrer geringen Tiefe oft nur sehr kurzfristig mit Wasser gefüllt sind und im Sommer 
teilweise austrocknen, erschwert das Monitoring mittels installierter Pegel. Satellitendaten stellen eine 
wichtige Informationsquelle dar, die flächenhaft konsistente Daten bereitstellen kann. Im Projekt 
FEMOWinkel wurden lange Zeitreihen auf der Basis von multispektralen Satellitendaten für das 
Monitoring der Lackenausdehnung verfügbar gemacht. In einem ersten Schritt wurde die Ausdehnung 
der Lacken basierend auf Zeitreihen der Landsat-Satelliten, die seit 1984 Daten liefern, abgeleitet. 

Die abgeleiteten Zeitreihen wurden im zweiten Schritt mittels Methoden des maschinellen Lernens dazu 
verwendet, datengetriebene Modelle zu trainieren, die die Lackenausdehnung aufgrund von Klimadaten 
(Niederschlag, Temperatur, Verdunstung) und Grundwasserdaten modellieren können. Im Rahmen 
dieser datengetriebenen Modellierung ging es u.a. um die Fragestellung, ob es möglich ist, die 
sommerliche Austrocknung von Lacken bereits einige Monate im Voraus vorhersagen zu können, z.B. 
aufgrund zu geringer Niederschläge im vorhergehenden Winterhalbjahr. Die Ergebnisse zeigen, dass 
es für einen Großteil der Lacken möglich ist, unter Einbeziehung der Eingangsdaten für den 
Frühsommer kurzfristig vorhersagen zu können, ob eine Lacke im Sommer trockenfällt oder nicht. Bei 
längeren Vorhersagezeiträumen, z.B. wenn nur Daten bis zum Frühjahr vorhanden sind, sinkt die 
Wahrscheinlichkeit, eine korrekte Vorhersage zu treffen. 

Die Projektergebnisse sind zum einen von Bedeutung für die wissenschaftliche Forschung, da die 
Vorhersage hydrologischer Zeitreihen mittels datengetriebener Methoden einen relativ jungen 
Forschungszweig darstellt. Zum anderen sind die Ergebnisse von Bedeutung für das Monitoring von 
Lacken ohne automatische Pegel, sowie für die Identifikation von besonders von Austrocknung 
gefährdeten Salzlacken. 

 



 

StartClim2021.G 

7 StartClim2021 Endbericht 

G-2 Abstract 

Wetlands are of great importance for biodiversity as a result of their habitat function. They also fulfil a 
vital role for the regional water cycle. The salt pans of the Austrian Neusiedler See - Seewinkel National 
Park - locally known as Salzlacken - are a unique habitat for specialised plant and animal species. 
Conservation of these vulnerable wetlands largely depends on their water balance and human water 
use. The large number of salt pans, which are also often inundated only for a short time, poses a 
challenge for operational monitoring. The monitoring is primarily carried out using in-situ gauges. 
Satellite remote sensing has the potential to bridge this gap by provisioning spatially consistent data. 
Within the FEMOWinkel project, long time series of water extent in the Seewinkel were retrieved from 
multi-spectral Landsat data reaching back in time as far as 1984. 

In a second step, the retrieved time series of water surface area were used to train data-driven models 
to estimate water area and drying state of salt pans based on climate (e.g. precipitation, temperature, 
evaporation) and groundwater data. The data-driven models were used to address whether the drying 
state of a salt pan during summer can already be predicted some months earlier, e.g. due to missing 
recharge of salt pans and groundwater after low precipitation sums during the previous winter season. 
Results show that for a large number of wetlands a short-term forecast on the drying state is possible in 
early summer. With longer lead times the probability of making a correct forecast is decreasing. 

The project results are of importance, on the one hand, for the scientific community as the data-driven 
modelling of hydrological processes is a relatively recent field. On the other hand, the results hold 
importance for the monitoring of salt pans with no in-situ gauges and the identification of wetlands which 
are particularly in danger of drying up. 
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G-3 Introduction 

G-3.1 Background 
Wetlands fulfil a multitude of ecosystem functions and provide services to the livelihoods of people and 
communities (Gardner et al., 2015). Regulatory services include water storage during dry periods and 
flood retention; provisioning services are mainly related to their habitat function for fish and other species 
used for food; cultural services are provided due to their important functions for tourism; supporting 
services include habitat provision for species, such as fish, amphibians and waterfowl, as well as 
important functions for biogeochemical cycles (e.g. Cheng & Basu, 2017). Supporting services are of 
special importance for the impacts of wetland loss on biodiversity. Despite these facts, wetlands are 
among the most endangered habitats. It is estimated that since the 1970s, 35% of wetlands have been 
lost (Convention on Wetlands, 2021), with losses reaching up to 90% in some regions, such as Europe 
and South Canada (Junk et al., 2012). Drainage and conversion to agricultural land, water abstraction 
for human use, pollution and alteration of environmental flows are among the chief causes for wetland 
degradation. Climate change is expected to exacerbate these impacts as extreme events, such as floods 
and  droughts, are expected to become more frequent in many parts of the world (e.g. Mitchell, 2012).  

G-3.2 Study area 
The Seewinkel is located to the East of Lake Neusiedl near the Hungarian border in Burgenland (Austria) 
and is part of the Pannonian basin. Due to its complex geological and climatological structure the region 
is home to fens, lakes and, most important to this study, salt pans, locally known as Salzlacken. These 
shallow waterbodies, which rely on salt-rich groundwater, serve as a hub of biodiversity, being home to 
a large number of plant and animal species (Krachler et al., 2000), especially halophytes and migrant 
birds (Naturschutzbund Burgenland, 2012). The Seewinkel is affected by similar anthropogenic 
processes in respect to wetland degradation and ecological disconnectivity as seen in other regions of 
the world (Sharma et al., 2021). This is indicated by the declining number of waterbodies: in 1855, 139 
Salzlacken were mapped, while in 2012, 59 exhibited an at least sufficient state (Naturschutzbund 
Burgenland, 2012). Decisions in favour of agricultural and town planning led to the construction of 
channels and wells in order to decrease the groundwater table, starting as early as 1828. Many others 
followed, most namely the Einserkanal in 1910, the Hauptkanal, Zweierkanal and the Xixsee-Kanal in 
the 1950s (Naturschutzbund Burgenland, 2012). The area around the salt pans, therefore, is 
heterogenous. Although some salt pans are surrounded by grassland, agricultural fields are normally in 
proximity (Dick et al., 1994). Forest are not abundant, only small tree-covered areas occur.  A map of 
the currently existing Salzlacken is shown in Abb. G-1:. To understand and model surface water 
dynamics it is key to understand the complex hydrological regime, which in return is influenced by 
geological, meteorological, and anthropogenic factors. Annual precipitation in the region is ca. 590 mm, 
however, subject to high seasonality. Due to high summer temperatures, potential evaporation exceeds 
rainfall during summer (Soja et al., 2013). According to data from ERA5-Land (Muñoz-Sabater et al., 
2021), the average 2 m air temperature is 10.8 °C with hot summers and moderately cold winters. The 
FEMOWINKEL project focuses on 34 Salzlacken that are filled by water at least periodically and can be 
observed from space using moderate-resolution (i.e. with a spatial resolution of several tens of metres) 
multi-spectral sensors. Before further explaining the key elements, some relevant literature is briefly 
summarised: 

As satellite measurements and in-situ information complement each other, this study relies on, not only 
in-situ groundwater and precipitation measurements, but also on past research. The salt pans in the 
Seewinkel have been the object of several scientific and non-scientific publications: individually studying 
each salt pan, Die Salzlacken des Seewinkels 
(Naturschutzbund Burgenland, 2012) is a key resource. Hydrological, chemical, ecological & biological 
characteristics are described, finally conducting an evaluation for each wetland concerning its potential 
for restoration. From a hydrological point of view, only three salt pans are classified as grade 2(Oberer 
Stinkersee, Obere Fürstenlacke, Mittlere Fürstenlacke), seven as grade 3 (Große Neubruchlacke, 
Westliche Fuchslochlacke, Lettengrube, Unterer Stinkersee, Südlicher Stinkersee, Kaschitzlacke), while 
all others obtain a grade of 4 or worse on a five-grade scale ("1" signifying a very good condition, "5" a 
very bad condition). Degradation is, in all cases, linked to groundwater table decrease. As it was 
published in 2012 (and refers to the condition as it was in 2010), it cannot be considered an up-to-date 
publication but remains the most comprehensive source on the individual wetlands. Another, more 
detailed, study has been carried out by Krachler et al. (2000). Starting with the observation that the 
number of intact salt pans is declining, the authors focus on questions regarding the formation, the 
functioning and possible reasons of the phenomenon of ’dying-salt pans’. Despite this being a limno-
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chemical analysis, they focus on finding mechanisms contributing to the decreasing ecological state of 
these small systems. Horváth et al. (2019) analysed airborne imagery acquired in 1959 and 2016 to 
map the abundance of salt pans in the project area. They found that the number of waterbodies in the 
region had declined from 110 to 30 between the two acquisitions. Along with the observed wetland loss, 
the number of invertebrate species in the remaining ponds declined. 

 

 
Abb. G-1: Salzlacken of the Seewinkel (source: M. Kuttner/Nationalpark Neusiedler See - Seewinkel). Base 

map and data from OpenStreetMap and OpenStreetMap Foundation (CC-BY-SA). © 
https://www.openstreetmap.org and contributors. 

Distinguishing Salzlacken can be approached according to qualitative criteria, such as their chemical 
composition, geological/geomorphological formation or quantitative criteria, such as their dynamics in 
terms of water volume stored and the timing of inundation, the so-called wetland hydroperiod. The 
FEMOWINKEL project aims at understanding wetland dynamics in terms of water surface area. 
Therefore, the latter approach constitutes a sensible way of differentiation. Two general types (with two 
subtypes for the first category) of Salzlacken appear in the literature: perennial Salzlacken and summer-
dry Salzlacken (Naturschutzbund Burgenland, 2012). Their main properties are summarised in Tab. G-
1:. 

Tab. G-1: Types of salt pans (Naturschutzbund Burgenland, 2012). 

Characteristic  Type 1A Type 1B Type 2 

Water availability Perennial Perennial Summer-dry 
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Supply Precipitation, 
Groundwater 

Precipitation, 
Groundwater, 
Externally fed 

Precipitation, 
Groundwater 

Water balance Positive Positive Negative 

Water level Astatic Astatic Static 

Occurence Sparsely existent near 
lake-shore: 
’Seerandlacke’ 

Sparsely existent Common 

Trend Negative Steady Negative 

Example case Untere Hölllacke, 
Unterer Stinkersee, 
Herrnsee 

St. Martins Therme, 
Zicksee, Darscholacke 

Lange Lacke, Große 
Neubruchlacke, Oberer 
Stinkersee 

 

Saline pan dynamics 

The salt pan cycle has intensively been discussed in the literature (e.g. Chivas, 2007; Lowenstein & 
Hardie, 1985; Shaw & Bryant, 2011). A brief summary of the available literature is provided here, 
followed by a comparison of general natural salt pan dynamics to the specific dynamics of the Seewinkel 
salt pans. The first stage of the cycle is the flooding stage entailing a brackish lake. Inflow can be of 
twofold nature: due to local precipitation events or due to groundwater level being higher than the top of 
the impermeable layer. The second stage is the concentration stage leading to the development of a 
saline lake. The driving process in this stage is the evaporation of water, while dissolved substances 
remain in the shrinking waterbody. With further evaporation the salt concentration increases and salt 
deposition starts. When no water is present anymore, the desiccation stage is reached. This is the third 
stage of the salt pan cycle entailing a dry pan. This phase is the default stage of a salt pan. Periodic 
connection to the groundwater body is necessary for these ecosystems to persist (Lowenstein & Hardie, 
1985). Bathymetry is of special importance in this respect. In contrast to deep lakes, where a small 
amount of rain might affect Lake Surface Area (LSA) only to a small extent, salt pans are shallow 
wetlands. Therefore, a single precipitation event could potentially result in considerable changes in LSA. 
Vice versa, a drought period can quickly lead to a shrinking of LSA, causing wetlands disconnection 
(Horváth et al., 2019) and fragmentation. This especially affects species reliant on local, immobile 
reproduction, such as arachnoids and amphibians (Naturschutzbund Burgenland, 2012). Furthermore, 
annual species, such as Große Salzmelde (Suaeda pannonica) and Kleine Salzmelde (S. prostrata) are 
more vulnerable to extreme wetness or dryness (Albert, 2013).  

Dying salt pans  

Salt pans are vulnerable to disturbances and longer-term trends in water supply and removal. Salt pans 
periodically fall dry when precipitation sums are low. During periods with higher precipitation these salt 
pans typically refill. The absence of rainfall or, more critically, the occurrence of low groundwater levels, 
however, cannot be compensated during wetter periods (Krachler et al., 2000). In the latter case, drying 
from beneath occurs, a process currently affecting many of the Seewinkel salt pans. It is caused by an 
increasing distance between the lake bottom and the groundwater table (threshold at 70 cm according 
to Naturschutzbund Burgenland (2007)), resulting in an interruption of capillary rise. As a result, no salt 
is transported to the wetland bottom weakening the impermeable layer. Additionally, precipitation is 
incrementally eluviating the impermeable layer from above, stopping lake formation while also 
transporting salts into deeper layers (Krachler et al., 2000). 

G-3.3 State-of-the-art  

G-3.3.1 Monitoring of wetlands using earth observation data 
Wetland hydroperiod describes the duration and timing of water occurrence in a wetland and is of 
importance for characterising ecosystem functions, such as a wetland's habitat function (Foti et al., 
2012). Its determination relies on precise measurements of water level and water extent. While in-situ 
water gauges provide accurate measurements at a high temporal resolution, installation and 
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maintenance of fixed water gauges are costly. Moreover, due to the point-based nature of water gauge 
measurements they only provide highly accurate information from their location, whereas heterogeneity 
in terms of bathymetry and vegetation can lead to considerable spatial variability within a wetland. Earth 
observation using satellite platforms can provide synoptic information about surface water extent over 
large areas (e.g. Hess et al., 2003; Pekel et al., 2016; Reschke et al., 2012). Satellite sensors can 
provide information about water extent and, to a limited extent, water surface elevation. The direct 
measurement of water surface elevation using radar altimeters, however, is confined to narrow tracks 
underneath the satellite overpasses and, hence, not available for most inland waterbodies and 
especially not for smaller ones due to the relatively large footprints of altimeters over land surfaces 
(Birkett, 2000; Schwatke et al., 2015). Hence, most studies have focused on the retrieval of surface 
water extent using optical (Klemas, 2013; Niculescu et al., 2020; Pekel et al., 2014; Vanderhoof & Lane, 
2019) and microwave data (Hess et al., 2003; Prigent et al., 2007; Reschke et al., 2012). Especially 
data acquired using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 
satellites have been used for the delineation of surface water bodies over large regions. Multispectral 
data from Landsat have been demonstrated to be of use for the distinction between water and land 
surfaces (Pekel et al., 2016) and have been used for the monitoring of inter-annual variations in the 
extent of small wetlands (Ogilvie et al., 2018; Vanderhoof et al., 2016). While vegetated areas are 
characterised by high reflectance in the near infrared (NIR) portion of the electromagnetic spectrum (ca. 
700 to 800 nm), water surfaces typically absorb most of the incoming radiation at these wavelengths 
(Jensen, 2007). This makes NIR bands especially useful in the case of salt pans, which are often hard 
to distinguish from bare and sparsely vegetated areas (e.g., sand surfaces, lake sediments) in the visible 
wavelengths. Bare salt surfaces have been found to have much higher reflectivity in both visible and 
NIR bands than water surfaces (Safaee & Wang, 2020). Therefore, multispectral data are prime 
candidates for wetland monitoring in steppe regions, such as the Seewinkel. The data acquired by the 
Landsat 5 to 8 satellites furthermore covers a period of ca. 38 years, which makes them suitable for 
characterising inter-annual variations in wetland extent due to climate variability and land use change. 
Due to the global coverage of Landsat, large-scale operational surface water products have been 
generated, such as the Global Surface Water (GSW) product (Pekel et al., 2016) and the Dynamic 
Surface Water Extent (DSWE) product (Jones, 2019). The GSW product is globally available through 
Google Earth Engine as temporal composites and change maps as well as annual and monthly 
composites. 

Cloud cover and cloud shadows are a limiting factor for the use of multispectral data. These effects are 
typically addressed during level-2 processing of the data. Cloud and cloud shadow masks are derived 
using a scene classification before atmospheric correction of the data. Commonly applied algorithms 
include the Land Surface Reflectance Code (Vermote et al., 2018) and Sen2Cor (Main-Knorn et al., 
2017). More recent approaches have focused on the use of deep learning architectures for cloud and 
cloud shadow segmentation in multispectral images (e.g. Wieland et al., 2019). 

 

G-3.3.2 Wetlands modelling 
Wetlands and water bodies are typically modelled using physically based or conceptual models. Models, 
such as the Pothole Complex Hydrological Model (Liu & Schwartz, 2011), can model wetlands 
complexes and their size frequency distributions. However, they are often developed for certain types 
of wetlands, e.g., the North American Prairie Pothole Region in the case of Liu & Schwartz (2011), and 
specific amounts of data are necessary for their parameterization that are often not readily available. 
Data-driven modelling has emerged over the last decades as a flexible framework to bridge the gap 
between simple statistical models and physically based models. This progress has been facilitated by 
advances in the field of machine learning (ML). ML has been used to model ecosystem processes, such 
as evapotranspiration (Zhao et al., 2019), fire (Forkel et al., 2017) or discharge in karst environments 
(Xu et al., 2022). 

In recent years, a number of studies have applied ML on predicting the water level of waterbodies (Wee 
et al., 2021), focusing on model interpretation, (e.g. Wu et al., 2022), model performance on a daily (e.g. 
Choi et al., 2020) or monthly (e.g. Hrnjica & Bonacci, 2019) basis. Water level is typically modelled 
based on in-situ measurements with a temporal resolution of 1 day or less, accounting for the short-
term character of the hydrological cycle. Other studies, challenging alternative model constellations 
include (Chang et al., 2014; Ghorbani et al., 2018; Li et al., 2016; Nhu et al., 2020; Wang & Wang, 2020; 
Wen et al., 2019; Zhu et al., 2020). The feature spaces include hydrological and/or meteorological 
variables, while commonly struggling with proper estimation of peak values (e.g. Choi et al., 2020). Work 
on the modelling of LSA has been done on case studies in Australia (Soltani et al., 2021), Iran (Soltani 
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et al. 2021) and Central Minnesota (USA) (Delaney et al., 2022). For the former site, the authors applied 
Generalized Group Method of Data Handling (GGMDH) and stochastic modelling for a time series from 
between 2004 and 2019, while for the second one, SARIMA in combination with Deep Learning (DL) 
was used to model and predict remote-sensing derived LSA between 2001 and 2019. Modelling Lake 
Gregory (Australia) worked well with the GGMDH-model using either LSA, temperature and precipitation 
at time lag t-1 or a combination for short and long periods (2020-2060).  Sumiya et al. (2020) and 
Albarqouni et al. (2022) employed correlation and regression analysis to relate LSA to hydro-
meteorological variables. Another approach worth mentioning has been chosen by Daniel et al (2022). 
They introduce climate, LULCC (Land Use and Land Cover Change) and topography as features in a 
classification task aimed at estimating four different wetland permanence classes in the Prairie Pothole 
Region (PPR). Although struggling with relatively high error rates, permanence class membership was 
attributed to mainly climate or topography, depending on the study region. 

G-3.4 Project goals 
Based on the identified knowledge gaps on the Seewinkel Salzlacken ecosystems, the FEMOWINKEL 
project aims at addressing the following objectives: 

1. Make use of multi-spectral Landsat imagery spanning the time period from 1984 to 2021 to propose 
a prototype for monitoring the extent of the salt pans in the region. 

2. Apply ML methods to model water level and water extent in the salt pans based on climate and 
hydrological input data. 

G-3.5 Project work breakdown structure 
The work was organised in six work packages (WPs). The time planning for the WPs is shown in Abb. 
G-2:. The project was started in November 2021 and is scheduled to finalise in August 2022. 

WP 1: Project management. This comprises all the activities necessary for a smooth implementation of 
the planned project activities as well as the participation in the two StartClim workshops. 

WP 2: Data collection. Collection of all data necessary for the monitoring and modelling of the 
Salzlacken, such as earth observation data, climate data, groundwater levels and water levels. It also 
included interfacing with the Hydrographischer Dienst Burgenland. 

WP 3: Derivation of wetland water extent. Analysis and classification of multi-spectral earth observation 
data into water and non-water areas for the time period 1984-2021. 

WP 4: Typification of wetlands. Characterisation of salt pans in different categories according to their 
seasonal dynamics. 

WP 5: Data-driven modelling of wetland water level and extent. 

WP 6: Dissemination. Presentation of project results at StartClim workshops, scientific conferences and 
dissemination to stakeholders. 
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Abb. G-2:  Time planning of the FEMOWINKEL work packages. 
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G-4 Methods 

G-4.1 Mapping and monitoring of salt pans 

G-4.1.1 Datasets 
In the FEMOWINKEL project, we used multispectral data acquired by the Landsat 5 and Landsat 8 
satellites. Landsat 5 was launched in March 1984 and carried the Thematic Mapper (TM) sensor which 
offered a spatial resolution of 30 m in six channels covering the visible, near and short-wave infrared 
spectra. The Landsat 8 mission was launched in February 2013 after the end of the Landsat 5 mission. 
Its main payload, the Operational Land Imager (OLI) has nine bands in the visible, near and shortwave 
infrared spectra with a spatial resolution of 30 m and a panchromatic channel with 15 m spatial 
resolution. The Thermal Infrared Sensor (TIRS) has a resolution of 100 m and two TIR channels. As we 
assigned a higher priority to a long time series than to a higher spatial resolution, we only used the 30 
m OLI bands. Due to the end of the Landsat 5 mission in 2013 and the start of the Landsat 8 time series 
only after its commissioning phase was completed in March 2013 we have a gap of ca. one year from 
early 2012 to early 2013. 

We refrained from using Landsat 7 data because of the scan-line corrector failure that occurred in May 
2003 and affects the imagery acquired since that date. As a result, about 22% of data are missing during 
acquisition, however, this rate depends on the location of the target area within the footprint. Areas 
imaged at nadir are less affected than those at higher observation angles. 

All data used in the project were available through the Google Earth Engine (GEE) (Gorelick et al., 
2017). Landsat Collection 2 Level 2 data constitute a surface reflectance product that has been 
radiometrically corrected for atmospheric influences using the Land Surface Reflectance Code (LaSRC) 
algorithm (Vermote et al., 2018). An overview of the Landsat products used in the FEMOWINKEL project 
is shown in Tab. G-2:. We only used data acquired between April and October as we assumed that most 
dynamics would occur during the spring and summer months. 

Tab. G-2: Landsat products used in the project. 

Platform/
Sensor 

Product Time 
period 

Bands used Link 

Landsat 5 
TM 

USGS Landsat 5 
Level 2 Surface 
Reflectance, 
Collection 2, Tier 1 

1984-2011 B1: 0.45-0.52 μm (blue) 
B2: 0.52-0.60 μm (green) 
B3: 0.63-0.69 μm (red) 
B4: 0.77-0.90 μm (NIR) 
B5: 1.55-1.75 μm (SWIR1) 
B6: 2.08-2.35 μm (SWIR2) 

https://developers.g
oogle.com/earth-
engine/datasets/cat
alog/LANDSAT_LT0
5_C02_T1_L2 

Landsat 8 
OLI 

USGS Level 2 
Surface 
Reflectance, 
Collection 2, Tier 1 

2013-2021 B2: 0.452-0.512 μm (blue)  
B3: 0.533-0.590 μm (green) 
B4: 0.636-0.673 μm (red) 
B5: 0.851-0.879 μm (NIR) 
B6: 1.566-1.651 μm 
(SWIR1) 
B7: 2.107-2.294 μm 
(SWIR2) 

https://developers.g
oogle.com/earth-
engine/datasets/cat
alog/LANDSAT_LC0
8_C02_T1_L2 

 

A Landsat 8 image is shown in true colour as well as in false colour in Abb. G-3:. In the false-colour 
composite, water surfaces are visible as dark blue areas, whereas unvegetated agricultural areas are 
visible as red rectangles due to the higher shortwave infrared (SWIR) reflectance. Vegetated fields and 
natural vegetation appear in light green due to high NIR reflectance values. 
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Abb. G-3: Landsat 8 OLI image as true-colour composite (left) and false-colour (Red: SWIR 1; Green: NIR; 
Blue: red channel) (right). 

In addition to using the bands listed in Tab. G-2:, we derived the following spectral indices to be used 
as additional features in the classification: 

- Normalised Difference Vegetation Index (Jensen, 2007)           𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
, 

- Normalised Difference Water Index (McFeeters, 1996)             𝑁𝐷𝑊𝐼 =
𝑔𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝑔𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
, 

- Modified Normalised Difference Water Index (H. Xu, 2006)          𝑀𝑁𝐷𝑊𝐼 =
𝑔𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅1

𝑔𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅1
. 

G-4.1.2 Classification of salt pans 
For classification of the Landsat 5/8 surface reflectance products we selected the Random Forest 
(Breiman, 2001) classifier available in GEE1. We trained separate random forest (RF) models for each 
month between April and October in order to reflect the seasonality in reflectance. For this purpose 
monthly means were computed from the image time series for each spectral band and spectral index. 
As the spectral bands furthermore differ between the TM and OLI sensors we also trained separate 
models for data derived from Landsat 5 and Landsat 8. Furthermore, models were trained with and 
without the use of the indices NDVI, NDWI and MNDWI in order to evaluate the benefit of using these 
additional features. 

Training polygons were selected over permanent water and land areas. 80% of the retrieved samples 
were used for training the models, the remaining 20% were retained for validating the classification 
results. The RF models were built with a number of 300 trees. The number of variables per split was set 
to the square root of the number of input features (i.e. 2 in the case of models without and 3 in the case 
of models with spectral indices). 

We evaluated the models by computing overall accuracies from the test dataset. In order to obtain a 
more independent test dataset 10 Landsat 8 and 10 Landsat 5 scenes were randomly selected from the 
image stack and samples were drawn using the pixels retained for validation. This was done to make 
sure that no pixels were chosen for testing that were used for computing the monthly means that were 
used to construct the training features. We report the accuracy metrics for each combination of validation 
image, sensor and feature set (with and without normalised spectral indices). 

 
1 Available at https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest 

https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest


 

StartClim2021.G 

16 FEMOWINKEL 

G-4.2 Data collection and exploratory data analysis 

G-4.2.1 Datasets 
Three types of datasets were used: in-situ data, reanalysis data & remote sensing-based data on 
wetland water area. Dataset selection was driven by the need to provide meteorological and hydrological 
data for the entire period covered by the remotely sensed dataset, i.e. from the beginning of 1984 until 
at least the end of 2021, rather than using datasets with a high spatial resolution but short temporal 
coverage. The bounding box coordinates used for data retrieval were, if needed, latitude 47.6° N to 
47.9° N and 16.7° E to 17.0° E. If applied, anomalies were calculated by computing monthly average 
values over the entire period and then subtracting the respective monthly mean from the original value. 

G-4.2.1.1 In-situ datasets 

Information on groundwater level was accessed and downloaded from the Austrian eHyd portal2 for 
measurement gauges located in Seewinkel (BUNDESMINISTERIUM FÜR NACHHALTIGKEIT UND 
TOURISMUS, 2018). Limitations regarding the covered time period narrowed down the number of 
available stations (from ca. 80 to six stations). Firstly, not all stations offered measurements back to 
1984. Secondly, for up-to-date information these groundwater observation wells need to be equipped 
with automatic sensors, as otherwise the project would have needed to wait for manual evaluation of 
each sensor until the end of 2022. These data were provided by the Hydrographischer Dienst 
Burgenland. Following stations matched all criteria: S(station) 306043 St. Andrä am Zicksee, S 319418 
Gols, S 316174 Neusiedl am See, S 305755 Frauenkirchen, S 305813 Illmitz and S 319426 Apetlon. 
The measurements are point-based and come in a monthly resolution. Additionally, all data are 
submitted to quality control (BUNDESMINISTERIUM FÜR NACHHALTIGKEIT UND TOURISMUS, 
2018). For the yearly model, the monthly data were averaged in order to generate the yearly resolution. 

Precipitation stations are scarcer in comparison to groundwater stations. Five stations were available 
within Seewinkel: S 122010 Illmitz, S 110585 Andau, S 110569 Apetlon, S 110551 Podersdorf am See 
and S 106724 Frauenkirchen. eHyd provided data until the end of 2018, while data from ZAMG extended 
the precipitation time series until 2022. Data are point measurements at a daily temporal resolution. The 
daily data were summed to monthly and annual scales. 

Information on the recent water levels of some salt pans can be viewed and downloaded at Wasserportal 
Burgenland3. Longer records for 3 of the 34 salt pans, Lange Lacke, Zicksee and Darscholacke, were 
also provided by the Hydrographischer Dienst Burgenland. The measurements are point-based, 
although we were informed that not each station is located at the lowest point of the wetland (Abb. G-
4:). This dataset still represents a reliable information-resource, again, being subject to quality control. 
Here, too, monthly data were averaged over a yearly long period for the classification task. 

  
Abb. G-4: Water level gauges in Lange Lacke (left) and Darscholacke (right). Photos ©Schlaffer. 

 
2 Available at https://ehyd.gv.at/ 
3 Available at https://wasser.bgld.gv.at/ 

https://ehyd.gv.at/
https://wasser.bgld.gv.at/
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G-4.2.1.2 Reanalysis datasets 

ERA5-Land provided by Copernicus Climate Change Service offers a high-quality reanalysis product 
(Muñoz-Sabater et al., 2021). We used the monthly variables Total precipitation, 2m temperature and 
potential evaporation4  on a 0.1° x 0.1° (ca, 9 x 9 km) grid from 1984 to 2021. Therefore, seven pixels 
were derived in total that were averaged in a subsequent step, resulting in a single time-series per 
variable. 2m temperature is given as monthly averages in °C and potential evaporation and total 
precipitation as monthly sums in mm. 

G-4.2.1.3 Calculation of Secondary Products 

The drought indices Standardized Precipitation Index (SPI) and Standardized Precipitation-
Evapotranspiration Index (SPEI) were calculated in R (R Core Team, 2017) using the package SPEI 
(Santiago Beguería & Vicente-Serrano, 2017). The merit of these indices is that they provide an 
indication of short-term and long-term drought conditions, opening the opportunity for use as, e.g., 
groundwater drought indicator (Kumar et al., 2016). Both indices were based on ERA5-Land reanalysis 
data. The indices were calculated for integration periods of 3, 6, 12, 24 and 48 months. Hence, 10 more 
time series that represent potential predictors were produced. Addiationally, the number of days within 
a month with a maximum air temperature above 25 °C based was calculated based on ERA5-Land 2m 
air temperature. 

G-4.2.1.4 Remote-Sensing datasets 

For modelling, LSA as derived from Landsat using the approach described in section G-4.1 was used 
as target variable. The final temporal resolution of the dataset is depending on cloud cover. To 
homogenise the temporal resolution, the lake-wise time series were averaged to a monthly interval. As 
some months turned out to have no information assigned at all, the time series were linearly interpolated 
by deploying the package scipy-interpolate5 to produce additional and consistent data. Anomalies were 
calculated following the procedure described above.  

G-4.2.2 Exploratory analysis 

G-4.2.2.1 Time series analysis 

Visual interpretation of the time series along with analysing trends and seasonal dynamics formed the 
basis for further analysis. Trend detection was carried out by applying the non-parametric Mann-Kendall 
test (Kamal, Neel; Pachauri, 2018) for each time series. 

G-4.2.2.2  Correlation analysis 

Three approaches are most commonly used in correlation analysis: Pearson correlation coefficient (R), 
Spearman's rank correlation (ρ) and Mutual Information (MI). For this study, the former was chosen as 
it fulfils the needs of a preliminary understanding between the variables. The calculations were 
performed using the Python package pandas6. In some cases, and for reasons of completeness (in 
order to capture non-linearity), Spearman's ρ was calculated as an additional metric. 

G-4.3 Data-driven modelling of wetlands water level and extent 
Monthly WL/LSA time series enable different types of model setups that in return open the possibility of 
exploring different variable links and performance optimization. But which model fits best to the case at 
hand? As WL/LSA was not introduced to the feature space, different hydrological and meteorological 
features were related to WL and LSA data. Each serving its own purpose, three distinct experiments 
were set up based on the RF approach (Breiman, 2001): 

 
4 The description of the variables can be found here: 

 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-
means?tab=overview 
5 Available at https://docs.scipy.org/doc/scipy/tutorial/interpolate.html 
6 Available at https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html 

https://cds.climate.copernicus.eu/cdsapp%23!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp%23!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
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1. WL was modelled using a RF regression approach. WL was used in this context as the in-situ 
based measurements available with a high temporal resolution for a limited number of wetlands 
were assumed to have a higher accuracy than the estimates of LSA based on remote sensing. It 
was assumed that the higher accuracy data for training and testing would increase the robustness 
of fitted models and estimates of feature importance. 

2. LSA at a monthly scale was modelled using a RF regression approach with the goal of capturing 
the full dynamic range of each salt pan individually. The feature selection is the same as in the water 
level case. 

3. In order to test the capability of ML methods for forecasting whether a wetland will fall dry during 
a given year, a RF classification approach was selected. As a target variable, for each year it was 
determined if LSA in a wetland reached zero. At this point it was assumed that the respective wetland 
dried out completely. 

For modelling, the scikit-learn package, a free python machine-learning library, was selected7. It 
provides not only the RF-algorithm itself, but also various functionalities enabling explainability. 
Anomalies computed as described in G-4.2.1.1 were used for the modelling in order to remove the 
seasonality in the input time series. 

The input data are time series exhibiting autocorrelation. Thus an iid-(independent identically distributed) 
assumption is not met. Possible strategies have been proposed to evaluate model performance of 
algorithms applied to time series (Cerqueira et al., 2020). Two cross-validation (CV) schemes would fit 
to this model: 1) Blocked Leave-One-Out CV (LOO-CV), and 2) prequential CV (NTS-CV). LOO-CV 
uses all parts of the data for training and testing in each cycle (fold). In the classification model, e.g., 
yearly data is being investigated, therefore, the test set includes one year, and the training set includes 
the other 36 years in respect to the whole timespan. Meanwhile, the NTS-CV uses a growing window of 
blocks for training and always test on a block later in time. We decided to use LOO-CV for the purposes 
of this study. The data splits for modelling both classification and regression are based on a 75% - 25% 
allocation. Finally, the processing chain shown in Abb. G-5: was used for the modelling, both for the 
regression and the classification task.  

 
Abb. G-5: Flowchart of RF modelling. 

 
7 Available at https://scikit-learn.org/stable/ 

https://scikit-learn.org/stable/
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Each model's hyperparameters were tuned using the scikit-learn package RandomizedSearchCV8 
function that is building on the concepts of Bergstra & Bengio (2012). Its main advantage is focus on 
parameter budgeting and adjustability while aiming at finding optimal parameters. Additionally, it poses 
an option for preventing overfitting that turned out to be an issue in this study. Models dealing with small 
amounts of data tend to overfit the data. This tendency was addressed by trimming the decision trees 
(key parameters: n_estimators, max_features, max_depth and min_samples_leaf) in scope of execution 
the aforementioned method. Apart from filtering, feature importance was applied by employing the scikit-
learn package feature_importances9 , RFE10 (Recursive Feature Elimination) and RFECV11. Feature 
importance as a concept is based on the mean and standard deviation of accumulation of the impurity 
decrease within each tree and has proved to be a useful concept for RF classification (Saarela & 
Jauhiainen, 2021) and RF regression tasks (Grömping, 2015). As the classification task uses fewer and 
more basic predictors compared to both regression tasks and has a simpler setup in general, it will 
described first. 

G-4.3.1 Classification 

G-4.3.1.1 Model Setup  

As seen in section G-3.2, salt pans are an extreme environment in terms of variability. This insight can 
be used for modelling, as the remotely sensed data explores LSA, and therefore inherits the ability to 
separate between these two opposed salt pan states . The null hypothesis was picked as: 'the salt pan 
will not dry out completely during summer'. These conditions were translated into the binary classes "the 
wetland falls dry in year X" (coded as 0) and "the wetland does not dry out in year X" (coded as 1). 
Besides, it was assumed that forecasting of wetland drying during a year gets more challenging with 
increasing lead time, i.e., the model is designed to lack information acquired during the summer months 
whose conditions heavily influence wetland water balance. Therefore, we decided to sequentially add 
information on the forthcoming month, resulting in four models: one each for March, April, May and June 
(Abb. G-6:). Each model includes information from the preceding 12 months. For example, the model 
for the month March 2022 uses information dating back to April 2021, the model for month April 2022 
consists of information dating back to May 2021 and so on. For the testing period from 2011-2021, 
training data from the remaining period from 1984-2010 was chosen, resulting in 39 points of data. 
Starting the training data-window in autumn when evaporation declines and precipitation starts to gain 
significance or adding one without removing the last one pose other possible setups. The final setup is 
illustrated in Abb. G-6:. 

 

 

8Available at 

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html 
9 Available at https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html 
10 Available at https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html 
11 Available at 

https://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.R
FECV 

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
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Abb. G-6: Classification experiment design. 

For modelling the binary classification RF classifier was used. The estimator is included inside the scikit-
learn Python package12.  

G-4.3.1.2 Predictors 

Drawing from the considerations above with the additional restraining factor of data availability in mind 
(anthropogenic information), the predictors in Tab. G-3: constitute the model. 

Tab. G-3: Predictors used for classification tasks. 

 Temporal 
resolution 

Spatial 
resolution 

Source 

Groundwater level 
anomalies 

Monthly  Point-based eHyd, Wasserportal Burgenland 

Precipitation anomalies " Point-based ehyd, ZAMG 

SPI 6/24 " 0.1°x0.1° ERA-5 Land 

Evaporation anomalies '' '' '' 

SPEI (not used for 
modelling) 

'' '' '' 

Temperature anomalies '' '' '' 

Number of days above 
25 °C 

'' '' '' 

G-4.3.1.3  Evaluation  

As a performance metric for the binary classification we chose the F1-Score (Goutte & Gaussier, 2005), 
as it is commonly used for such problems. It is calculated as the harmonic mean between precision and 
recall. Furthermore, confusion matrices and other visualizations of the classification results were 
analysed. 

G-4.3.2 Regression Water Level (WL)/ Lake Surface Area (LSA) 

G-4.3.2.1 Model Setup  

The regression model is aimed at predicting the variables WL and LSA within the same setup, although 
following a certain order. In a first step, the model with the target WL was tested and interpreted. In the 
second step, models were trained on LSA, which was assumed to be less precise, however, covering a 
larger number of wetlands. As the LSA was aggregated to a monthly interval modelling WL used the 
same monthly resolution to ensure comparability. The monthly WL/LSA anomalies were used as target 
variables. The models were trained using data from May 1984 to Dec. 2012 while the remaining data 
were used for model testing.  

G-4.3.2.2 Predictors 

The features were based on the understanding that meteorological and hydrological conditions not only 
from the currently tested month but also from the previous months are of importance. As the 
interpretability increases when adding the currently tested month, it was decided include such 

 
12Availabe at: 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
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information despite decreasing the predictive utility. As the SPI/SPEI 6 and SPI/SPEI 24 (SPEI was not 
used for modelling, as evaporation data was picked as a separate predictor and the SPI is simpler, while 
the graph is showing a very similar behaviour (see G-5.2.1.2)) are covering information on drought 
conditions from 6 months to 2 years into the past, the other variables were expected to cover the 
remaining impact on the salt pans. As a conservative estimate, antecedent information of up to four 
months was included (Tab. G-4:), although 2-3 months were expected to be sufficient already. 

Tab. G-4: Features used for the regression task in addition to variables listed in Tab. G-3:. 

 Temporal resolution Spatial resolution Source 

Groundwater 
anomalies averaged 
over 2,3,4-month 

Monthly Point-based eHyd, Wasserportal 
Burgenland 

Precipitation 
anomalies averaged 
2,3,4-month 

Monthly Point-based eHyd, ZAMG 

Evaporation  
anomalies averaged 
2,3,4-month 

Monthly 0.1°x0.1° ERA-5 Land 

G-4.3.2.3 Evaluation  

As a performance metric for the regression model, we chose the Root Mean Square Error (RMSE). As 
RMSE is given in the same units as the variable of interest, the obtained values were normalised using 
the average area of each wetland to ensure comparability between the salt pans. 



 

StartClim2021.G 

22 FEMOWINKEL 

G-5 Results and Discussion 

G-5.1 Mapping and monitoring of salt pans 
Using the RF classifier, high to very high classification accuracies could be obtained for the retrieved 
water and non-water pixels for randomly selected Landsat 8 (Tab. G-5:) and Landsat 5 (Tab. G-6:) 
scenes. It is noteworthy that the models built using the indices NDVI, NDWI and MNDWI performed 
consistently better than the models that only use the information contained in the spectral bands. This 
is likely owing due to the clear separation between water and non-water pixels in the area of interest 
and its comparatively small size. A further aspect is the relative homogeneity of the area in terms of 
land-cover classes. Non-water pixels mainly belong to agricultural areas, grassland, and built-up areas, 
whereas forests or topographically challenging terrain are virtually absent. While these high accuracies 
indicate a good performance for the Seewinkel it is likely that the models will perform significantly worse 
when being transferred to other study areas due to the low diversity of the training dataset. 

Tab. G-5: Overall accuracies for randomly selected Landsat 8 scenes. 

Image date With spectral 
indices 

Without indices 

2021-06-24 1.0000 1.0000 

2019-10-25 1.0000 0.9996 

2013-10-01 1.0000 0.9996 

2014-05-20 1.0000 1.0000 

2016-03-31 1.0000 0.9996 

2018-04-29 1.0000 1.0000 

2015-09-21 0.9975 0.9971 

2018-07-27 1.0000 1.0000 

2015-07-26 0.9879 0.9833 

2013-07-29 1.0000 1.0000 

Tab. G-6: Overall accuracies for randomly selected Landsat 5 scenes. 

Image date With spectral 
indices 

Without indices 

1995-10-23 1.0000 1.0000 

1992-07-19 0.9747 0.9319 

1993-09-24 0.9924 1.0000 

1992-05-16 1.0000 1.0000 

2006-06-15 1.0000 1.0000 

1998-08-12 1.0000 1.0000 

1985-07-16 1.0000 0.9933 

1994-04-04 1.0000 1.0000 

1990-05-11 1.0000 1.0000 
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1994-07-25 1.0000 1.0000 

 

The comparison of the retrieved salt pan water extents with water levels measured in situ showed some 
limitations of the obtained results for the three Salzlacken where these data were available. In the case 
of the Lange Lacke (Abb. G-7:), water area shows high sensitivity to changes in water level as indicated 
by the high correlation between the two variables (Pearson r = 0.85, Spearman's ρ = 0.92). Both time 
series display distinct time periods with high water level/large water area, e.g., between 1996 and 2000 
and around 2015, as well as periods with low water level/decreased water area, e.g. during the early 
1990s, between ca. 2002 and 2010 and from 2017 until 2021. 

 
Abb. G-7: Time series of water area and water level (left) and scatterplot of the two variables for Lange Lacke. 

In the case of the St. Andräer Zicksee (Abb. G-8:), the relationship between the two variables is entirely 
different. While in-situ water level measurements show dynamics similar to Lange Lacke, water surface 
area is more stable with the exception of single isolated points where area almost is 0. These are likely 
to be artefacts caused by incomplete cloud masking leading to an underestimation of the true water 
extent. However, during some of the drier periods a slightly lower water surface area can be observed, 
e.g. from 2018 onwards. Correlation coefficients are r = 0.42 and ρ = 0.56. 

 
Abb. G-8: Time series of water area and water level (left) and scatterplot of the two variables for St. Andräer 

Zicksee. 

At the Darscholacke (Abb. G-9:), both of the aforementioned aspects can be observed. On the one 
hand, water area follows the general dynamics of drier and wetter periods in the water level time series. 
However, the amplitude of water area is considerably lower. Nevertheless, the obtained correlation 
coefficients are moderately high (Pearson r = 0.52, Spearman's ρ = 0.73) indicating a fairly strong 
sensitivity of water area to changes in water level. On the other hand, outliers occur throughout the time 
series, which are likely again the result of incomplete cloud masking. 
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Abb. G-9: Time series of water area and water level (left) and scatterplot of the two variables for Darscholacke. 

G-5.2 Exploratory Data Analysis 

G-5.2.1 Intravariable Analysis 

G-5.2.1.1 Groundwater 

The six groundwater time series display a seasonal pattern with an increase from late-winter to early-
summer and decrease during mid-late summer and autumn (Abb. G-10:). The station Neusiedl am See 
forms an exception, likely due to being influenced by the lake's water level. The Mann-Kendall test 
reveals significant decreasing trends (fitted lines shown in Abb. G-10:) for all stations except station 
316174 for which the null hypothesis ('there is no significant trend') could not be rejected. All plots are 
showing high periods around 1970 (where data are available), 1995 and 2015, while around 1990 and 
2004 low levels were measured. Depending on the point of measurement, different overall levels can 
be observed (e.g., the station 319426 is exhibiting lower mean values than station 319418, partly 
disclosing the structuring of the groundwater catchment). 

 
Abb. G-10: Time series of different groundwater stations (blue) with linear regression (red) for entire available 

periods. 
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G-5.2.1.2 Drought indices 

The calculated drought indices SPI 6/24 and SPEI 6/24 are shown in Abb. G-11:. Depending on these 
integration times, the signal inherits a higher or lower sensitivity to periods of increased or decreased 
dryness/wetness. Drought episodes can be spotted in the beginning 1980s, the 1990s and around 2004. 
The SPEI 24 is additionally showing drought conditions starting in 2018. Wet episodes occurred during 
the late 1990s, around 2010 and 2015. 

 
Abb. G-11: SPI and SPEI for integration periods of 6 and 24 months based on precipitation and evaporation 

data from ERA5-Land. 

G-5.2.2 Intervariable Analysis 
The matrix of Pearson correlation coefficients (Abb. G-12:) between the water level measured at Lange 
Lacke (319608), Zicksee (319491) and Darscholacke (319525) with all available variables described in 
G-4.2.2 reveals a moderate to strong correlation between water level and groundwater measurements 
(0.55, 0.43, 0.50, resp.). The respective coefficients between the three salt pans are very similar, yet 
the artificial salt pans Darscholacke and Zicksee show a weaker relationship in respect to groundwater. 
Contrary to the expectation, no relationship between precipitation (monthly), temperature (monthly), 
potential evaporation (monthly) and WL (monthly) can be revealed through straightforward correlation. 
Performing correlation on a daily basis and for various time lags has been carried out, while not revealing 
further insight. Yet, the drought indices exhibit a moderate correlation with wetland water level, 
anticipating the relationships that are further explored in section G-5.3.1. 
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Abb. G-12: Correlation matrix for water level (Lange Lacke (319608), Zicksee (319491) and Darscholacke 

(319525)) and input variables. These include: Precipi. In-Situ mean (averaged precipitation over all 
in-situ stations), GW (groundwater), ERA_5_pev (potential evaporation), ERA_5_t2m (2m 
temperature), ERA_5_tp (total precipitation), SPI 24, SPI 6. 

The correlation coefficients between Lake Surface Area (LSA) of all 34 water bodies with the selected 
hydro-meteorological variables are displayed in Abb. G-13: (again, similar results for Spearman's ρ were 
found). At first glance it shows that Kiesgrube, St. Martins Therme 1 and St. Martins Therme 2 stand out 
as they show no or negative correlation regarding the other water bodies and are strongly correlated 
with each other. The relationship between the LSA of Lange Lacke, Zicksee and Darscholacke, on the 
one hand, and groundwater, on the other hand, is in accordance to results of the correlation analysis for 
WL and groundwater. Moreover, the correlation between precipitation and the salt pans is, again, weak. 
Commonly, evaporation and temperature are exhibiting a weak to medium negative correlation. The SPI 
24 is showing a stronger correlation to the salt pans compared to the SPI 6. 
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Abb. G-13: Correlation matrix for lake surface area (LSA) for all 34 salt pans and various other variables. 

These include: GW (groundwater), ND1(averaged precipitation over all in-situ stations), SPI 6, SPI 
24, ERA_5_pev (potential evaporation), ERA_5_t2m (2m temperature), ERA_5_tp (total 
precipitation), 

G-5.3 Data-driven modelling of wetland water level and extent 
The classification targeting LSA scored a maximum (mean) F1-Score of 0.81 (model: June) with 
heterogeneous performance regarding the different salt pans. This statement holds true for both the 
regression models targeting WL and LSA (concerning the test set). Although the models generalize the 
ground-conditions by spatial averaging (which, as it turns out, does not pose a problem for model 
performance), the main factor attributing uncertainty is thought of being the varying level of 
anthropogenic forcing on the micro-ecosystems, as has been argued in section G-3.2. Another reason 
might be temporal asynchronisms and temporal averaging preventing adequate model timing (although 
not suggested by the correlation analysis). On another note, and as discussed in G-4.3, overfitting 
needed to be handled by trimming the decision trees for both regression and classification. 
Hyperparameters were tuned using cross-validation as implemented in RandomizedGridCV. 

G-5.3.1 Modelling Water Level (WL) via a Regression Approach 
The models including groundwater performed better at predicting WL than the models without this 
information (Tab. G-7:). This holds true for all the three salt pans where WL data were available: Zicksee, 
Lange Lacke and Darscholacke. The testing error for Zicksee is higher (0.39, 0.42 resp.) compared to 
Lange Lacke (0.15, 0.24 resp.) and Darscholacke (0.16, 0.23 rep.). Although unexpected in this extent, 
the large increase of test error compared to the training error for Zicksee likely hints at overfitting. 
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Tab. G-7: RMSE for regression on water levels of Zicksee, Lange Lacke and Darscholacke for the test-
period. Maximum water level amplitude of all three salt pans is 1.25m. 

Model RMSE with groundwater RMSE w/o groundwater 

RMSE Zicksee [m] - Test 0.39 0.42 

RMSE Lange Lacke [m] - Test 0.15 0.24 

RMSE Darscholacke [m] -Test 0.16 0.23 

RMSE Zicksee [m] - Train 0.06 0.09 

RMSE Lange Lacke [m] - Train 0.11 0.16 

RMSE Darscholacke [m] - Train 0.09 0.13 

 

With a maximal amplitude of about 1.25 m of WL change for all lakes, the findings above indicate a 
model that, relative to that amplitude, performs adequately for Zicksee and rather well for Lange Lacke 
and Darscholacke. Zicksee and Darscholacke are both artificially fed, resulting in a larger susceptibility 
to error, as can be exemplified by looking at the large bias in the periods beginning in 2017 and 2020, 
respectively. Still, the correlation between the estimated and measured values indicates that the model 
results are closely related to the ground truth, as presented in Tab. G-8:. On another note, variance 
seems to be connected to short-term changes and bias to long-term dynamics while, in this model, both 
seem to be driven by changes in the groundwater body.  

Tab. G-8: Pearson's r correlation coefficient between measured water level and estimated water level for 
all six model setups. 

 

Pearson's r 

Zicksee GW Zicksee Lange 
Lacke GW 

Lange 
Lacke 

Darscholacke 
GW 

Darscholacke 

WL - Overall 0.77 0.68 0.93 0.84 0.9 0.81 

WL - Train 0.96 0.89 0.94 0.89 0.93 0.89 

WL - Test 0.84 0.66 0.89 0.7 0.77 0.49 

 

Lange Lacke displays a pronounced increase in WL from 1990 to 1997 (Abb. G-14:). This increase and 
the subsequent decrease are captured well by the model, although peak values are underestimated. A 
similar pattern can be spotted in the test period. With respect to the most recent years model estimates 
slightly overestimate the measured WL, especially when GW level is not used. The peak around mid-
2015 is not portrayed in its full extend. Overall, as the scatterplot indicates, the training period is captured 
more nicely (Pearson's r: 0.94, 0.89 resp.), while the dynamic in the test period is captured but displaying 
a larger spread (0.89, 0.7 resp.).  
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Abb. G-14: Regression result for Lange Lacke. The red line shows the separation between training (before) 

and test period (after). 

The dynamic range of Zicksee (Abb. G-15:) is less pronounced for the training period compared to the 
testing period hindering an estimation of the systematically low values from 2012 onwards. Here, certain 
patterns relating to lower overall water levels are failed to be recognized, introducing a visible bias. 
Moreover, the model struggles to replicate variability, resulting in a lower overall correlation of 0.77 and 
0.68 in respect to the model without groundwater contribution. The testing period correlation is much 
better when taking groundwater into account (0.84). This turns out to be a valid observation for all three 
salt pans. 

 
Abb. G-15: Regression result for Zicksee. The red line shows the separation between training (before) and 

test period (after). 

Although performing better than Zicksee during the test period, the model for Darscholacke is has similar 
problems around the year 2020 (Abb. G-16:). This can also be spotted in the scatterplot and the 
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respective correlation coefficient for the test period (0.77 and 0.49). An analogical dynamic to 2020, 
occurring in the training-period, was failed to properly be addressed. Even though the yearly dynamics 
are modelled well, the sub-yearly fraction is subject to partly large deviations and reversed dynamics. 
Still, the overall correlation coefficient is high (0.9 and 0.81).  

 
Abb. G-16: Regression result for Darscholacke. The red line shows the separation between training (before) 

and test period (after). 

Although a little less pronounced and despite including more than 400 data points, a similar model 
instability compared to the classification can be observed. Still, many train-test splits performed in a 
comparable way with regard to the main model. Folds around the year 2000 (~month 190) and the year 
2010 (~month 300) were particularly susceptible for changes in performance. Despite producing several 
outliers, the average performance settled down at around 0.1 m for all three lakes, as shown in the 
boxplots. Therefore, it can be concluded that different data splits have a significant influence on model 
performance. LOO-CV does not always follow a temporal order and the model still includes trend 
information which suggests alternate reasons for error susceptibility and model instability. 
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Abb. G-17: Cross-validation for all three models. 

As discussed in G-4.3.2, the regression tasks are intended to enable interpretability. As these 
observations are based on performance evaluation and not the variability of targets when changing the 
input, these results are subject to careful interpretation. By plotting the feature importances (Abb. G-18:, 
Abb. G-19:), the dependency on information on groundwater becomes apparent: the four most important 
predictors are based on direct information on groundwater, whereas the SPI 6 and SPI 24 inform the 
model in a similar way. All other features lack importance, only information on temperature and 
evaporation exhibit elevate themselves to some extent. The results suggest a strong connection 
between WL and groundwater that meets the expectations expressed in G-5.2. Precipitation is showing 
its impact on a very small scale (as can also be seen in the Partial Dependency Plot (PDP)). When 
removing direct information on groundwater altogether, SPI 6 and especially the SPI 24 become more 
important and likely act as proxies for the missing groundwater data, while the other variables remain 
dispensable. 

 
Abb. G-18: Feature Importance for all three salt pans (WL) with groundwater-contribution. 

 
Abb. G-19: Feature Importance for all three salt pans (WL) without groundwater-contribution. 

The PDPs (Abb. G-20:) suggest that SPI 24 is impacting the model in a similar fashion as groundwater 
integrated over, e.g., 4 months. This corresponds to the expectation gained from the literature research 
that groundwater inflow only happens, when a certain height (groundwater level anomaly of -0.8 m) 
compared to the impermeable layer is attained. 
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Abb. G-20: Partial Dependency Plots (PDPs) for groundwater (GW_4) and drought index SPI24 for Lange 
Lacke.  

G-5.3.2 Modelling Lake Surface Area (LSA) 

G-5.3.2.1  Modelling LSA via a Classification Approach 

The classification results include the classification performance averaged across all wetlands. In a 
general sense, the model performs favourable for all eight models in respect to the test set (and more 
so in respect to the training set (Tab. G-9:). The mean sensitivity (meaning the true negative rate) for 
the groundwater model is high at around 0.78. The capability of predicting the dry-up of wetlands 
increases when adding information on later months, starting with a value of 0.75 for March and finishing 
at 0.84 for June. A similar pattern can be observed for the model without groundwater, although with 
slightly lower sensitivity values. The positive predictive value (ppr) is around 0.78 proving the models 
balanced performance due to conditioning with reference classes as well as results classes. Focusing 
on the groundwater-based models, although the June model performs best, merely a small performance 
difference compared to the March model can be observed. Moreover, the model is improving evenly 
with the introduction of additional months. For June, with groundwater included, the F1-score implies an 
81 % probability of estimating the correct class affiliation. In comparison, when removing the 
groundwater information from the model, the probability decreases by 3%. This, again, goes in 
accordance with the expectation, as we are merely using a proxy, the SPI 24, for groundwater. 
Furthermore, the models perform differently for different wetlands across all modelling experiments. 
Wetlands with a high variability in drying and replenishing have a higher impact on overall model 
performance, as stable wetlands are easier for the model to predict (similar effect as observed by Daniel 
et al. (2022)).  

Tab. G-9: Performance for eight different classification models. 

Model March April May June 

F1 Testscore with GW 0.76 0.76 0.78 0.81 

F1 Trainscore with GW 0.91 0.92 0.92 0.92 

F1 Testscore w/o GW 0.74 0.74 0.74 0.78 

F1 Trainscore w/o GW 0.9 0.92 0.91 0.92 

 

Three categories of wetlands emerge (based on model for June): one with satisfying results (< two 
misclassifications during the testing period), one with low model accuracy (> two misclassifications) and 
one composed of merely a single class (meaning that the salt pans either has not fallen try during the 
observed period or is always dry). These include: Huldenlacke, Gsigsee, Darscholacke, Kuhbrunnlacke, 
Unterer Stinkersee, Kirchsee, Kleine Neubruchlacke, Hottergrube, Badesee Apetlon, St. Martins 
Therme 2. The first group consists of the following salt pans: Lange Lacke, Neubruchlacke, Kiesgrube 
Standlacke, Wörthenlacke 2, Heidlacke, Sechsmahdlacke, Martinhoflacke, Fuchslochlacke 1 and 2, 
Herrnsee, unbekannt, Zicksee und Zicklacke. Part of the second group are: Ochsenbrunnlacke, 
Wörtenlacke 1, Mittlerer Stinkersee, Oberer Stinkersee, Fuchslochlacke 3, Hochstätten, Birnbaumlacke, 
Kaschitzlacke und Albersee. These results can be compared to the ecological classification from 
(Naturschutzbund Burgenland, 2012) that hints at anthropogenic forcing, although no firm conclusion 
could be drawn here. This line of thought is being followed more extensively in the regression task on 
LSA. The individual results can be seen in Abb. G-21:. 
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Abb. G-21: Top figure: Classification results with Groundwater included for the models March(top), April, May 
and June(bottom). The colours show which wetland was correctly classified in which year. Bottom 
figure: respective confusion matrices for the month March (left) to June(right). The results 
correspond to the null hypothesis stated in G-4.3.1.1. 

Rather minor changes develop when excluding information on groundwater (Abb. G-22:). For some 
lakes, the results stay the same, while for others, a single-year prediction, mostly impairing the 
performance, changed. Additional misclassifications for the model in June appeared for Lange Lacke, 
Neubruchlacke, Standlacke, Wörtenlacke 2, Mittlerer Stinkersee, Sechsmahdlacke, Martinhoflacke, 
Fuchslochlacke 3, Kaschitzlacke, St. Martins Therme 1 and Zicklacke. For some, like Herrnsee, the 
results improved by one additional correct classification. 
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Abb. G-22: Top: classification results without groundwater included for the models March (top), April, May and 
June(bottom). The colours show which wetland was correctly classified in which year. Bottom: 
respective confusion matrices for the month March (left) to June (right). The results correspond to 
the null hypothesis stated in G-4.3.1.1. 

G-5.3.2.2  Modelling Lake Surface Area (LSA) via a Regression Approach 

The regression model targeting LSA is, in many ways, closely related to the model targeting WL. Most 
importantly, 34 instead of three salt pans were subject to modelling and subsequent interpretation. 
During the testing period the model performances show ample variability between the observed salt 
pans (Abb. G-23:). Hence, the trained models do not inherit the ability to generalize between the salt 
pans. Evaluating the test-performance for both setups, the RMSE relative to the respective mean salt 
pan area averages in at 0.99, and 0.93 respectively. Lange Lacke achieves a relative RMSE of 0.5, the 
Unterer Stinkersee 0.4, the Zicksee 0.22 and the Darscholacke 0.28. The omittance of groundwater-
related variables worsens the results for nearly every salt pan, although not in a major way.  
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Abb. G-23: RMSE for the test period relative to salt-pan wise average LSA over the whole period for the model 

with groundwater contribution (blue) and without groundwater contribution (orange) 

Comparing the RMSE between train and test periods, most models show a similar magnitude of error, 
although some perform a great deal worse than others for the test set (Abb. G-24:). These include 
Kiesgrube, Mittlerer Stinkersee, Huldenlacke, Katschitzlacke and Heidlacke. This difference in 
magnitude can be explained when studying the individual estimations in more detail: in most cases, a 
high RMSE was connected to misclassifications and/or the particularly wet year 2015, both resulting in 
outliers that were not estimated correctly. Furthermore, for some smaller lakes, the classifier merged 
two lakes, as in the case of Lange Lacke and Katschitzlacke in April, May and June 2015 resulting in 
extraordinarily high RMSE. Averaging the error over all individuals, the model tested over the train period 
achieves a relative RMSE of 0.49, and 0.57 for the respective model without groundwater level. 

 
Abb. G-24: RMSE for the training-period relative to salt-pan wise average LSA over the whole period. 

Plotting four exemplary salt pans provides further insight (Abb. G-25:). Lange Lacke exhibits a high 
natural variability that is depicted well in the training dataset. Still, the regression fails to follow the 
decrease in LSA from 2018 onwards. The dynamics of the three other wetlands, whose water extent 
dynamics are less pronounced, can be captured in a less erroneous manner, although outliers often 
could not be reproduced. 
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Abb. G-25: Regression results for Lange Lacke, Unterer Stinkersee, Zicksee and Darscholacke. The red line 

shows the separation between training (before) and test period (after).  

Correlation analysis is revealing similar insights compared to G-5.3.1, only in an exacerbated manner 
(see Tab. G-10:). The average correlation over all salt pans is much smaller for the test-set than for the 
training set. As hyperparameter-tuning was employed to prevent overfitting, other effects are likely to 
have accumulated during modelling. Firstly, the remotely sensed time series come with certain 
inaccuracies and noise hindering the accurate modelling. Secondly, the interpolation of missing months 
is likely to not constitute a realistic representation of the processes on the ground. Thirdly, the condition 
of the micro-ecosystems might have changed between the test- and train-period, resulting in a different 
response to the applied predictors. As a general remark, performance for artificially fed salt pan was 
better than for more natural-fed ones. Furthermore, small salt pans tend to score worse than larger 
ones. Relating the hydro-ecological status given by Naturschutzbund Burgenland (2012) can, as an 
example, be done for Oberer-, Mittlerer and Unterer Stinkersee. The former and latter one received 
grades 2 and 3, therefore displaying a tendencially healthy ecological condition, whereas Mittlerer 
Stinkersee is graded a 4. Interestingly, the models for the salt pans in a better ecological shape tend to 
perform better, as can be seen by the error-bars in Abb. G-23: and Abb. G-24:, although Mittlerer 
Stinkersee has a smaller size compared to the other two. 
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Tab. G-10: Pearson's r correlation coefficient between measured water level and estimated water level for 
all six model setups. 

 

Corr. 
coeff 

Lange 
Lacke 
GW 

L. 
Lacke 

Unt. 
Stinker
- see 
GW 

Unt. 
Stinker
-see 

Dar.- 

lacke 
GW 

Dar.-
lacke 

Zicks. 
GW  

Zicks. All 
salt 
pans 
GW 

All 
salt 
pans 

 

WL - 
Overall 

0.89 0.8 0.85 0.82 0.77 0.77 0.67 0.66 0.83 0.8 

WL - 
Train 

0.95 0.9 0.93 0.92 0.91 0.9 0.91 0.89 0.93 0.91 

WL - 
Test 

0.68 0.46 0.45 0.35 0.23 0.27 0.32 0.19 0.48 0.34 

 

Feature importances are again showing the importance of groundwater levl, may it be via in-situ 
measurements or by the way of SPI 24 as a proxy (Abb. G-26: and Abb. G-27:). This holds true for all 
four exemplary salt pans, although some variation is visible. E.g., the original groundwater time series 
is receives a higher weight for Lange Lacke and Unterer Stinkersee, whereas averaging it over 4 months 
turns out more helpful for Lange Lacke and Darscholacke. This is likely due to the lower variability in the 
observed LSA time series of the latter two wetlands. A more detailed analysis shows that groundwater 
averaged over 4 months is most important among all variables, followed by the SPI 24 and the original 
groundwater time series. In parallel to the results in G-5.3.1, the FI without groundwater information 
emphasizes the importance of the SPI 24 as a replacement. The interest tends to be more equally 
distributed in the latter case, as more salt pans exhibit higher values for former peripheral features. 

 

 
Abb. G-26: Feature Importance (FI) for four exemplary salt pans with included information on groundwater 

 
Abb. G-27:  Feature Importance (FI) for four exemplary salt pans with excluded information on groundwater. 
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G-6 Dissemination of project results 

G-6.1 Presentations at scientific conferences 
The project idea, methods and preliminary results have been presented at the following scientific 
conferences: 

- Schlaffer, S., Schauer, H., Büechi, E., & Dorigo, W. (2022). Fernerkundungsbasiertes 
Langzeitmonitoring der Wasserflächen im Nationalpark Neusiedler See - Seewinkel. Tagungsband 22. 
Klimatag, 90–91. 

- Schauer, H., Schlaffer, S., Büechi, E., and Dorigo, W. (2022): Remote sensing-based monitoring of 
the water surfaces in the Neusiedler See – Seewinkel National Park, EGU General Assembly 2022, 
Vienna, Austria, 23–27 May 2022, EGU22-11157, https://doi.org/10.5194/egusphere-egu22-11157. 

G-6.2 Dissemination activities with stakeholders 
On 11 May 2022, three project members had a meeting with the administration of the Nationalpark (NP) 
Neusiedler See - Seewinkel. The project activities and some preliminary results were presented and 
discussed. The representatives of the NP administration expressed great interest in the activities, such 
as the automatic delineation of water-covered area per Salzlacke and the forecasting of a complete 
drying of wetlands during summer. The project members were provided with information on additional 
monitoring programmes being carried out by other stakeholders and feedback was given concerning 
the uncertainties of in-situ water level measurements, especially in cases where the water level gauge 
is not installed at the deepest point of a wetland. Three different wetlands were visited (Illmitzer Zicksee, 
Unterer Stinkersee, Lange Lacke) and an overview of the main ecologic and hydrologic problems was 
given for each one by the NP representatives. 
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G-7 Conclusions 

The FEMOWinkel project has produced results which hold important implications for future wetland 
monitoring and management in the Seewinkel. Monitoring of wetland water surface area using Landsat 
data is feasible with approximately monthly intervals. Limitations of the approach relate to the incomplete 
masking of clouds in the Landsat surface reflectance products which were used in this project. While 
the focus in FEMOWinkel was to provide a long time series reaching back as far as the mid-1980s, for 
future operational monitoring activities data from the European Sentinel-2 mission are available since 
2016 offering higher spatial and temporal resolutions. Especially the latter will help to overcome 
limitations related to cloud cover. 

The data-driven modelling approach has proven to be a performant alternative to simple statistical and 
physical models for this case study, although the performance is heavily reliant on data pre-processing 
and model setup. Although the individual, monthly salt pan dynamics have not been accurately 
represented by performing Random Forest (RF) regression analysis targeting the WL and LSA, the RF 
classifier, as a baseline, was able to capture the inter-annual dynamics. Hence, a robust prediction 
whether a salt pan will or will not fall dry during summer with models with input from the months March 
to June seems possible, regardless of whether groundwater level is used as a model feature. Problems 
concerning overfitting and the change of environmental conditions of individual salt pans between 
training and testing period were identified as particularly important for the classification task. Additional 
challenges particularly apply to the regression experiments, e.g., data quality, model timing, the 
difference in performance between smaller and larger salt pans and issues concerning the modelling 
algorithm itself, namely its tendency for overfitting. Intermediate model setups, e.g. the seasonal 
prediction of drying events or the prediction of the first drying event during a year are likely to perform 
in correspondence to its degree of generalization. However, the drying trend of recent years is not 
consistently captured in all the models. Especially models that do not incorporate information on 
groundwater have problems in this respect. Anthropogenic water use and drainage could not be 
incorporated into the models due to a lack of available data. Such information would be especially useful 
in cases where groundwater level is not solely dependent on the climatic water balance but more and 
more influenced by anthropogenic factors, such as growing water use for irrigated agriculture. Data-
driven modelling could incorporate such additional data in a more or less direct manner. We see an 
increased availability of open data on anthropogenic water use as one of the main bottlenecks for further 
use of such models for making robust forecasts on the future eco-hydrological state of the Salzlacken. 
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